Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway.
نویسندگان
چکیده
Overexpression of either heterologous or homologous proteins that are routed to the periplasm via the twin-arginine translocation (Tat) pathway results in a block of export and concomitant accumulation of the respective protein precursor in the cytoplasm. Screening of a plasmid-encoded genomic library for mutants that confer enhanced export of a TorA signal sequence (ssTorA)-GFP-SsrA fusion protein, and thus result in higher cell fluorescence, yielded the pspA gene encoding phage shock protein A. Coexpression of pspA relieved the secretion block observed with ssTorA-GFP-SsrA or upon overexpression of the native Tat proteins SufI and CueO. A similar effect was observed with the Synechocystis sp. strain PCC6803 PspA homologue, VIPP1, indicating that the role of PspA in Tat export may be phylogenetically conserved. Mutations in Tat components that completely abolish export result in a marked induction of PspA protein synthesis, consistent with its proposed role in enhancing protein translocation via Tat.
منابع مشابه
Interactions between phage-shock proteins in Escherichia coli.
Expression of the pspABCDE operon of Escherichia coli is induced upon infection by filamentous phage and by many other stress conditions, including defects in protein export. Expression of the operon requires the alternative sigma factor sigma54 and the transcriptional activator PspF. In addition, PspA plays a negative regulatory role, and the integral-membrane proteins PspB and PspC play a pos...
متن کاملOrganization of the AAA(+) adaptor protein PspA is an oligomeric ring.
The 25.3 kDa "adaptor" protein, PspA (phage shock protein A), is found in the cytoplasm and in association with the inner membrane of certain bacteria. PspA plays critical roles in negatively regulating the phage shock response and maintaining membrane integrity, especially during the export of proteins such as virulence factors. Homologues of PspA function exist for thylakoid biogenesis. Here ...
متن کاملMolecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF.
The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the sigma(54) subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of sigma(54) AAA activators in that it lacks an N-terminal regulatory doma...
متن کاملSelf-Assembly of Escherichia coli Phage Shock Protein A
The Phage shock protein (Psp) response is an extracytoplasmic stress response. The central component of this system is PspA, a protein that mediates the physiological response to membrane stress. PspA is also involved in regulating its own transcription and that of the psp operon, forming a positive feedback loop. PspA has been previously shown to oligomerise into higher-order species, includin...
متن کاملProperties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli
The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ(54)-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF-A-C-B-ArcB controls psp expression. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 186 2 شماره
صفحات -
تاریخ انتشار 2004